
Graphic Elements ©1993 by Al Evans. All rights reserved. (Version 3.2 2/23/94)
1

Graphic Element Dynamics

This section will discuss attributes of Graphic Elements which
are common to all types of elements. The next section,
“Standard Graphic Element Types,” will discuss the specific
types of Graphic Elements which are provided with the Graphic
Elements system.

Regardless of its role in the application program, every graphic
element has four required components:

— Its ID: Each Graphic Element is assigned a unique four-
character identifier. This ID is specified by the application
program when it creates the element, and it used for all
subsequent access to and management of that element. If
element is a pointer to an individual Graphic Element,
element–>objectID is the element's ID.

— Its location: Each Graphic Element occupies a
rectangular area in the GEWorld of which it is a member.
If element is a pointer to a Graphic Element, element-
>animationRect is this location. In contexts where an
element's location is considered as a point, the top-left
corner of this rectangle is used.

— Its plane: Each Graphic Element exists in a certain
“plane” above its background. This plane is represented
by an integer between 0 and 32767. Elements with higher
plane numbers will be drawn after elements with lower
plane numbers, and will therefore obscure them partially
or totally. If element is a pointer to a Graphic Element,
element->drawPlane is the element's plane.

— Its rendering procedure: Each Graphic Element has a
pointer to a procedure which is responsible for drawing all
or part of that element, as requested by the display
controller, into an environment provided by the display
controller. If element is a pointer to a Graphic Element,
element->renderIt is a pointer to the element's rendering
procedure. The Graphic Elements system provides

Graphic Elements ©1993 by Al Evans. All rights reserved. (Version 3.2 2/23/94)
2

rendering procedures for all its standard element types.
Rendering procedures will be discussed in depth in the
section “Customizing Graphic Elements.”

Graphic Elements ©1993 by Al Evans. All rights reserved. (Version 3.2 2/23/94)
3

Adding Action

For any Graphic Element, regardless of its type, the display
controller provides routines for controlling visibility, for
movement, and for changing planes. With one exception, these
routines can be called from anywhere: the application program,
the autochange or collision procedures of the element itself, or
the autochange or collision procedures of another Graphic
Element. The single exception concerns visibility: once an
element has been made invisible, by its own action or that of
another Graphic Element, it cannot make itself visible again.
The display controller “ignores” invisible elements, and does not
call any of their procedures.

The following routine makes a Graphic Element visible or
invisible:

void ShowElement(GEWorldPtr world, OSType elementID,
Boolean showIt);

Where:

— world is the GEWorld containing the element,

— elementID is the unique four-character ID assigned to the element,

— showIt is true to make the element visible, false to make it invisible.

The following routines move a Graphic Element, either to a new absolute position within its
GEWorld or relative to its current position:

void MoveElement(GEWorldPtr world, OSType elementID,
short h, short v);

void PtrMoveElement(GEWorldPtr world, GrafElPtr element,
short h, short v);

void MoveElementTo(GEWorldPtr world, OSType elementID,
short h, short v);

void PtrMoveElementTo(GEWorldPtr world, GrafElPtr element,
short h, short v);

Where:

— world is the GEWorld containing the element,

— elementID is the unique four-character ID assigned to the element, or (in the Ptr…
versions) element is a pointer to the element.

Graphic Elements ©1993 by Al Evans. All rights reserved. (Version 3.2 2/23/94)
4

— for MoveElement() and PtrMoveElement(), h and v are the horizontal and vertical
distances to move the element; for MoveElementTo() and PtrMoveElementTo(), they
are the new horizontal and vertical position of the element (i.e., the top-left corner
of the element's animationRect) in the coordinate system of the element's
GEWorld.

The Ptr… versions of these move routines are provided for use in situations such as an
element's autochange procedure, where a pointer to the element is already available.

The following routine changes the plane of a Graphic Element. It can be used, for example,
to make one element “go behind” another one:

void SetElementPlane(GEWorldPtr world,
OSType elementID, short newPlane);

Where:

— world is the GEWorld containing the element,

— elementID is the unique four-character ID assigned to the element,

— newPlane is the new plane for the Graphic Element.

Optional Components

For some Graphic Elements — for example, a bush in the foreground of a game, or a meter
readout which is run directly by the application program — the four required components
are sufficient. But most “interesting” Graphic elements possess one or more optional
components, which permit them to react to the passage of time, to contact with another
Graphic element, and to the actions of the application's user:

— The autochange procedure: Each Graphic Element may have an autochange
procedure, in conjunction with an autochange interval. This procedure is called
automatically by the display controller as it creates updated frames for the screen
display. Each element also has space for a pointer to additional data which may be
used as desired by its autochange procedure. If element is a pointer to a Graphic
Element, its autochange procedure is element->changeIt, its autochange interval
is element->changeIntrvl, and its autochange data pointer is element-
>changeData.

Graphic Elements ©1993 by Al Evans. All rights reserved. (Version 3.2 2/23/94)
5

— The collision procedure: Each Graphic Element may have a collision procedure
and a collision plane. An element's collision procedure is called whenever it
moves into contact with another Graphic Element, and the other element's plane is
equal to the “colliding” element's collision plane. If element is a pointer to a
Graphic Element, its collision procedure is element->doCollision, and its collision
plane is element->collisionPlane.

— The interaction procedures: Any Graphic Element may interact with the user.
This interaction has two parts: a tracking phase, which normally lasts as long as
the user holds the mouse button down, and an action which is performed either
repeatedly during the tracking phase (for example, while the user manipulates a
slider control) or once at the end of it (for example, when the user “presses a
button”). If element is a pointer to a Graphic Element, its tracking procedure is
element->trackingProc and element—>actionProc is its action procedure.

Automating Graphic Elements

The use of autochange, collision, and interaction procedures allows complete separation of
graphics programming from the main line of the application program's code. These
procedures are called automatically by the display controller under the appropriate
conditions. If a Graphic Element's changeIntrvl has expired, its autochange procedure is
called when the application program calls DoWorldUpdate(). Its collision procedure is
called whenever it comes into contact with another element on its collision plane because
of a MoveElement() or MoveElementTo() call. The tracking procedure of a sensor-type
element is called by the display controller whenever the user presses the mouse button
while the cursor is within its animationRect. The use of these facilities provided by the
Graphic Elements system allows the programmer to create complex graphic scenes which
are portable, maintainable, and reusable.

Autochange Procedures

The prototype for an autochange procedure is

typedef pascal void (*AutoChangeProc) (GEWorldPtr world,
GrafElPtr element);

Graphic Elements ©1993 by Al Evans. All rights reserved. (Version 3.2 2/23/94)
6

Where:

— world is the GEWorld for which the autochange procedure is being called, and

— element is the Graphic Element for which it is being called.

Autochange procedures are executed in the context of the application program, and
therefore have free access to global variables, other application functions, etc. However, it
is best to limit their actions to those which directly affect the Graphic Elements for which
they are called, since reliance upon such external facilities reduces their portability.

The display controller provides the following procedure which is called during the
initialization of a Graphic Element to install its autochange capability:

void SetAutoChange(GEWorldPtr world, OSType elementID,
AutoChangeProc changeProc,
Ptr changeData, short changeIntrvl);

Where:

— world is the GEWorld containing the element,

— elementID is the unique four-character ID assigned to the element,

— changeProc is a pointer to the autochange procedure for the element,

— changeData is a pointer to any auxiliary data to be used by the autochange
procedure, for example a pointer to a path record or a motion record for the
element,

— changeIntrvl is the desired interval, in milliseconds, between calls to the
autochange procedure for the element.

Graphic Elements ©1993 by Al Evans. All rights reserved. (Version 3.2 2/23/94)
7

Collision Procedures

A collision procedure for a Graphic Element has the following prototype:

typedef pascal void (*CollisionProc)(GEWorldPtr world,
GrafElPtr element, GEDirection dir, GrafElPtr hitElement);

Where:

— world is the GEWorld for which the collision procedure is being called.

— element is the Graphic Element for which it is being called.

— dir is the “direction” of the collision, as calculated by the display controller. This
direction (up, left, down, right, upLeft, upRight, downLeft, or downRight) specifies
which part of this element has touched the “hit” element.

— hitElement is a pointer to the element with which this element has collided.

Like Autochange procedures, collision procedures are executed in the context of the
application. The choice of parameters passed to them represents a compromise between
speed and flexibility. Collision detection and reporting is a complex subject. The amount of
information needed to handle a collision varies widely, depending on the Graphic Element
in question. For example, while the mere fact of collision might be enough information for
a Graphic Element representing a bomb in an arcade game, another element representing
a physical object in a simulation might need to calculate a new motion vector, taking into
account its own motion and that of the object it has collided with. The display controller's
collision routines are designed to be fast and efficient for the first case, while providing
data which is useful as a starting point for more detailed calculations in the second.

The display controller follows this sequence of steps in handling possible collisions when a
Graphic Element is moved:

— If the element has a collision plane, the display controller checks whether the
rectangle representing its location intersects the rectangle of any element on that
plane.

— If an intersection is found, the display controller determines the “direction” of the
collision by the manner in which the two rectangles overlap.

Graphic Elements ©1993 by Al Evans. All rights reserved. (Version 3.2 2/23/94)
8

— If a collision has occurred and the element has a collision procedure, that
procedure is called.

— If the Graphic Element with which the element in question has collided has a
collision plane equal to this element's plane and has a collision procedure, that
element's collision procedure is called.

The display controller provides the following procedure which can be called during the
initialization of a Graphic Element to install its collision-handling capability:

void SetCollision(GEWorldPtr world, OSType elementID,
CollisionProc collideProc, short collidePlane);

Where:

— world is the GEWorld containing the element,

— elementID is the unique four-character ID assigned to the element,

— collideProc is a pointer to the element's collision procedure,

— collidePlane is the number of the plane containing elements with which this
element will collide.

Interaction Procedures

In general, the tracking capabilities of interactive Graphic Elements are specific to a given
type of sensor, and are set up during the creation of these elements. This is true for the
standard sensor-type elements. The writing of tracking procedures will be discussed in the
section “Customizing Graphic Elements.” A sensor's action procedure, on the other hand,
is specific to an individual Graphic Element. This procedure has the prototype:

typedef pascal void (*SensorAction)(GEWorldPtr world,
short sensorState);

Where:

— world is the GEWorld containing the sensor,

— sensorState is the state of the sensor (for example, the present
setting of a slider-type sensor) when the action procedure is called.

Graphic Elements ©1993 by Al Evans. All rights reserved. (Version 3.2 2/23/94)
9

The application program calls the following procedure during the
initialization of a sensor-type Graphic Element to install its action
procedure:

void SetSensorAction(GEWorldPtr world, OSType sensorID,
SensorAction newAction);

Where:

— world is the GEWorld containing the sensor,

— sensorID is the unique four-character ID assigned to the sensor element,

— newAction is a pointer to the action procedure to be assigned to the sensor
element.

